
Oracle Forms Look & Feel Project

Developer guide

Francois Degrelle
http://fdegrelle.over-blog.com/

forms.pjc.bean@free.fr

http://fdegrelle.over-blog.com/

Content
Introduction..4
Warning..5
LAF Project presentation..6
System configuration..9
Understanding the components...10

The CSS file..10
The laf.pll PL/SQL library..11
The Java Beans and the Pluggable Java Components..............................21

The DrawLaf Java Bean...21
The ImageViewer Java Bean..23
The LAF_LOV Java Bean..25
The LAF_Map Java Bean..26
The Pluggable Java Components (PJCs)...27

Implementation in the Forms modules...30
Download the LAF Project zip file..31
Examples..35
Acknowledgements...41
Developer list...42

Introduction

When you are using a product to develop a piece of software, you often
(always?) have to push it to its limits. Sometimes, these limits are not enough,
and you are stuck, then it requires a lot of imagination to find workarounds.

Even though your application is just fine, answering the end-user questions
perfectly and providing the right functions, there is often (always?) a weak
point, and sometimes, the weak point is the “design”, the “look”.

As is well known, you can not please everyone, so that you will probably have
to manage different feelings ranging from “Whow, beautiful!” to “Arg, it is so
ugly!”

Mixing all these points is a good way for introducing the Forms Look and Feel
Project.

What better way to please everyone by letting them select their own look ?

Is it the “raison d'être” of the Cascading Style Sheets, so that, what about
using the CSS system in an Oracle Forms application?

This is exactly what the Forms Look and Feel Project does. Using a CSS file to
adapt the look of a Forms Application at runtime.

Warning

This tool does not come from Oracle and is not supported by the Oracle
Support.

Do not open Service Request on Metalink to ask questions about it.

Instead, send emails to the following email address:

forms.pjc.bean@free.fr

Or ask questions on the dedicated forum:

Discussion Forum

Use also the email or the forum to report any problem you could encounter
during installation, configuration, using or simply understanding the tool.

There is no license attached to this project. It is open source, and you can use,
modify and distribute it as you want without any authorisation of any kind.

http://forms-pjc-bean.space-forums.net/look-and-feel-project-f4.html
mailto:forms.pjc.bean@free.fr

LAF Project presentation

The Look and Feel Project is a set of tools that permits decorating a Forms
module at runtime.

All the decoration information is stored and read from an external CSS file,
then applied to the Forms elements at runtime.

It has bean created to answer the following questions:

● Change easily the look of the Forms application.

● Have a more «HTML» look.

● Externalize the graphical information.

● Add some missing functions

Easy change of the look at runtime

A lot of areas/widgets can be decorated by the tool:

● Window caption

● Menu bar

● Canvas

● Tab canvas

● Status bar

● Alert box

● Items

Gives the table-blocks a more HTML look

Add a few new functions:

● Handle menus at runtime (add, enable, disable, show, hide, remove
options).

● Handle frames at runtime (add, move, modify, hide).

● Play pre-loaded sounds.

● Receive external asynchronous messages.

● Draw texts anywhere on the screen.

● Display Swing JTable LOVs, Alerts and input dialogue boxes.

● JColorChooser.

The tool is made up of a PL/SQL library (laf.pll), a set of Java Beans and PJCs
grouped in a jar file (laf_xxx.jar), and an external file containing the
information tags (CSS).

 The PL/SQL library contains functions and procedures needed to decorate
the canvases and the block tables.

 The jar file contains the beans needed to paint over the canvas and
overload the standards forms widgets (buttons, check-boxes, radio
groups and lists).

 The CSS file contains the tags used to describe how each Forms element
will be decorated.

Because the graphical information is read from a given CSS file, it is easy to
change the look and feel of the application without modifying the form
modules. With it, you can really externalize the look of the Forms application
by separating the functional implementation to the graphical presentation.

Another goal is to give the table blocks a more “HTML” look. Each block is
divided in three sections, that can be decorated separately:

● the title section
it can contains a text and a line to underline it

● the header section
Contains many tags to decorate the head section of the table.

● the body section
contains many tags to decorate the table body.

Go to the CSS file section to see a complete description of all the tags you can
use.

System configuration

● Copy of the JAR file

The zip file of the project contains a /Java/JAR sub-folder with four files:

● laf_902.jar if you use the 9.0.2 or 9.0.4 version
● laf_1012.jar if you use the 10.1.2 version
● laf_10123.jar if you use the 10.1.2.3 version
● laf_11112.jar if you use the 11g version

Depending of the Forms version you use, copy the corresponding JAR file to
your /forms/java folder.

Note:
the provided JAR files are already signed.
If you rebuild them, you will have to sign them.

For Forms 11g the /java directory is located in the
<middleware_home>/forms/java directory.

● Update of the formsweb.cfg configuration file

You also have to add the JAR file name to the archive tag of your
/forms/server/formsweb.cfg configuration file.

...
archive=frmall.jar,laf_1012.jar
...

note:
We update the archive tag and not the archive_jini because this tool uses
methods available in the 1.4 JRE, so it won't run with the Jinitiator.

Note:
If you intend to play MP3 sound files, add also the jl1.0.jar file in your
/forms/java folder and to the archive tag.
It can be loaded from the following URL:
http://prdownloads.sourceforge.net/javalayer/jlayer1.0.zip?download

For Forms 11g the formsweb's directory is located in the
<middleware_home>\user_projects\domains\ClassicDomain\config\fmwconfig
\servers\WLS_FORMS\applications\formsapp_11.1.1\config\ directory

Understanding the components

The CSS file

To achieve the goal of separating the decoration information from the Forms
module, each element's decoration attributes are stored in an external file,
allowing the developer to change the Look and Feel at any time without any
module recompilation.

It looks like a “real” CSS file, even if the tags are Forms dedicated.

It contains sections of five different types:

● type:canvas dedicated to tags used to decorate a canvas

● type:title dedicated to tags used to decorate the table-block title

● type:header dedicate to tags used to decorate the table-block header

● type:body dedicate to tags used to decorate the table-block body

● type:gui dedicated to tags used to decorate the other Forms areas

The tags included in sections of type canvas are read by the Paint_Canvas()
procedure stored in the laf.pll PL/SQL library.

The tags included in sections of type title, header and body are read by the
Paint_Block() procedure stored in the laf.pll PL/SQL library.

The tags included in sections of type gui are read by the Set_GUI_Properties()
procedure stored in the laf.pll PL/SQL library.

Doc: The description of all available tags can be read from the CSS file
properties documentation.

http://fdtool.free.fr/LAF/doc/pdf/LAF_CSS_properties.pdf
http://fdtool.free.fr/LAF/doc/pdf/LAF_CSS_properties.pdf

The laf.pll PL/SQL library

It contains the functions and the procedures needed to open the CSS file,
read the tags from it, then perform the drawing job through the
associated Java Bean’s methods.
Here are the four main procedures the developer will use in the Forms triggers:

● Open and read the CSS file.

PKG_LOOK_AND_FEEL.Open_Css()

● Draw objects on the canvas.

PKG_LOOK_AND_FEEL.Paint_Canvas()

● Decorate the given table-block.

PKG_LOOK_AND_FEEL.Paint_Block()

● Set global properties for every GUI widgets.

PKG_LOOK_AND_FEEL.Set_GUI_Properties()

Description of the functions and procedures stored in the
PKG_LOOK_AND_FEEL package:

● Open the CSS file

 Function Open_CSS(PC$Filename IN Varchar2) -- CSS filename
 Return Boolean ;

This function is used to open the given CSS file.
If the file cannot be opened, it returns FALSE, and the other painting methods
won't be accessible.
You must provide the full pathname.
A Forms parameter – PM$CSS_FILENAME - is provided in the Forms template
(LAF_TEMPLATE.fmb) and also in the laf.olb Object Library. It can be used to
set the file name through the Call_Form(), Open_Form() and New_Form()
built-ins.

 e.g.
 If PKG_Look_And_Feel.Open_Css(:PARAMETER.PM$CSS_FILENAME) Then
 -- ok, we can use the painting methods --
 ...
 End if;

● Paint the canvas

 Procedure Paint_Canevas
 (
 PC$Class IN Varchar2, -- Canevas CSS class name
 PC$BeanName IN Varchar2 -- associated bean area
) ;

This procedure is used to paint the given canvas where the PC$BeanName
Bean Area is located. Every tag contained in the PC$Class CSS section name is
applied on the canvas. The CSS class name given must be of type: canvas

 e.g.
 -- paint the canevas that supports the :CTRL.BEAN Bean Area --
 -- with the content of the .maincanvasOracle CSS section
 PKG_LOOK_AND_FEEL.Paint_Canevas('.maincanvasOracle', 'CTRL.BEAN') ;

● Paint the table-block

 Procedure Paint_Block
 (
 PC$Block IN Varchar2, -- the block name to decorate
 PC$BeanName IN Varchar2, -- the associated bean area
 PC$VA_Name IN Varchar2, -- the visual attribute associated
 PC$HeadClass IN Varchar2, -- the table header CSS class name
 PC$BodyClass IN Varchar2, -- the table body CSS class name
 PC$TitleClass IN Varchar2 Default Null, -- the table title CSS class name
 PC$Title IN Varchar2 Default Null, -- the block title
 PB$ScrollBar IN Boolean Default True, -- scrollbar exists on block
 PB$SortBlock IN Boolean Default Null -- can sort the table_block
) ;

This procedure is used to paint the given block.

The PC$VA_Name parameter (*) is the name of the Visual Attribute used to
colour each other row.
The PC$HeadClass parameter indicates which CSS section to use to paint the
table header. It must be of type: header
The PC$BodyClass parameter indicates which CSS section to use to paint the
table body. It must be of type: body
The PC$TitleClass parameter indicates which CSS section to use to paint the
table title. It must be of type: title and is not required.
If indicated, the PC$Title contains the title text you want to draw.
The PB$ScrollBar parameter indicates if you allow the procedure to move the
scrollbar. Sometimes, the procedure may have to move the items between
each other to draw the lines, then the addition of these moves can need to
push the scrollbar away. If this parameter is set to FALSE, the scrollbar won't
be moved.
The PB$SortBlock parameter indicates if the user can sort the block by clicking
the table header.

(*) Since the 1.3.8 version, PC$VA_Name argument is obsolete, as you can
define it in the CSS file.

 e.g.

 PKG_LOOK_AND_FEEL.Paint_Block
 (
 PC$Block => 'EMP'
 ,PC$BeanName => 'CTRL.BEANTAB'
 ,PC$VA_Name => :PARAMETER.PM$VA
 ,PC$HeadClass => '.tableHeaderOracle'
 ,PC$BodyClass => '.tableBodyOracle'
 ,PC$TitleClass => '.tableTitleOracle'
 ,PC$Title => 'Oracle BLAF Look and Feel'
 ,PB$ScrollBar => True
) ;

● Paint the other areas

 Procedure Set_GUI_Properties
 (
 PC$Class IN Varchar2, -- GUIs CSS class name
 PC$BeanName IN Varchar2 -- the associated bean area
) ;

This procedure is used to decorate the other Forms elements, like Window
caption, menu bar, status bar, elements and so on.
It need the CSS section name and the Bean Area name.
The CSS class name must be of type: gui

 e.g.
 -- set the global GUI properties --
 PKG_LOOK_AND_FEEL.Set_GUI_Properties('.GUIPropertiesOracle',
 'CTRL.BEAN') ;

● Write the tags in the CSS file

 Function Write_CSS (PC$Filename IN Varchar2) -- CSS filename
 Return Boolean ;

This function is used to write the tags stored in memory to a file.
It is used by the css_updater.fmb sample dialog created to update the tags
in a wysiwig way.

● Read a specific tag value

 Function Get_Tag_Value
 (
 PC$Section IN Varchar2, -- CSS section name
 PC$TagName IN Varchar2, -- CSS tag name
 PC$Default IN Varchar2 Default 'none' -- default value
) Return Varchar2 ;

It is used to return the value of the given section/tag name. If the tag is not
found, it returns the PC$Default value if given, else it returns NULL.

 e.g.
 -- get the value of the font-family tag in the .tableHeaderOracle section --
 LC$Value := Get_Tag_Value('.tableHeaderOracle', 'font-family');

● Write a specific tag value

 Procedure Set_Tag_Value
 (
 PC$Section IN Varchar2, -- CSS section name
 PC$TagName IN Varchar2, -- CSS tag name
 PC$TagValue IN Varchar2 -- CSS tag value
);

It is used to write/update the value of the given section/tag name

 e.g.
 -- update the value of the tag --
 Set_Tag_Value('.tableHeaderOracle', 'font-family', 'Arial');

● Add a new tag value

 Procedure Add_Tag_Value
 (
 PC$Section IN Varchar2, -- CSS section name
 PC$TagName IN Varchar2, -- CSS tag name
 PC$TagValue IN Varchar2 -- CSS tag value
);

This procedure is used to add a new section/tag value in memory.

● Remove an existing tag

 Procedure Remove_Tag_Value
 (
 PC$Section IN Varchar2, -- CSS section name
 PC$TagName IN Varchar2 -- CSS tag name
);

This procedure is used to remove a section/name tag from memory

● Get the complete tag table

 Function Get_Tag_Table Return TYP_TAB_CSS ;

This function returns a collection of every tags read in the CSS file.
The return type is a collection of records.

● Get all tags of a given section

 Function Get_Section_Tags(PC$Section IN Varchar2) Return TYP_TAB_TAG ;

This function returns a collection of tags

● Set all tags of a given section

 Procedure Set_Section_Tags
 (
 PC$Section IN Varchar2, -- CSS section name
 PT$TTags IN TYP_TAB_TAG -- Array of tags found
) ;

This procedure set every tags of the given section.

● Displaying of an error message

 Procedure ShowError(PC$Message IN Varchar2) ;
This procedure is used internally to display an error message. It uses the
LAF_AL_ERROR Alert, present in the LAF_TEMPLATE.fmb file and the laf.olb
object groups.

● Colour the records of a table-block

 Procedure Fill_table(PC$Type IN Varchar2 DEFAULT 'ODD') ;

This procedure is used to colour the records in the current block.
It is generally called in the Post-Query and When-New-Record-Instance block-
level triggers.

PC$Type can be one of the following:

● ODD every odd record are painted
● EVEN every even record are painted
● ALL every records are painted

The visual attribute used to paint the record is the one given in the
Paint_Block() method.

● Get a specific token from a delimited string

 Function Split
 (
 PC$Chaine IN VARCHAR2, -- input string
 PN$Pos IN PLS_INTEGER, -- token number
 PC$Sep IN VARCHAR2 DEFAULT ',' -- separator character
) Return Varchar2 ;

This function returns the nth token in a delimited string.
Given the original string is: 'one,two,free,four' and you want to get the second
element, proceed as follows:

 LC$Value := Split('one,two,free,four', 2) ;

The function return NULL when the token is not found.
To get every token, use the following code snippet:

 Declare
 LC$Value Varchar2(100);
 LN$I Pls_Integer := 1 ;
 Begin
 Loop
 LC$Value := Split('one,two,free,four', LN$I) ;
 Exit When LC$Value Is Null ;
 ...
 LN$I := LN$I + 1 ;
 End loop;
 End;

If the separator character is not a comma, give it as the third argument.

 LC$Value := Split('one|two|free|four', 2, '|') ;

● Convert a delimited string to a collection

 Procedure To_String_Collection
 (
 LC$String IN Varchar2,
 PT$StringTable IN OUT NOCOPY TYP_TAB_STRINGS
);

Description of the functions stored in the PKG_TOOL package:

These functions are used to establish a correspondence between the several
coordinate systems that Forms can handle.
As the methods stored in the Java Bean use only the pixel coordinate system,
these functions help you to convert the current Forms value to pixel equivalent
and vice-versa.

● Get the pixel value corresponding to the current coordinate system given
value

 -- return pixels from any coordinate system --
 Function To_Pixel(PN$Coord1 In Number)
 Return Pls_Integer ;

● Get the current coordinate system value from a pixel given value

 -- return current coordinate value from pixel value --
 Function To_Current_Coord(PN$Coord1 In Number)
 Return Number ;

● Get the value of two pixel values in a delimited string

 Function To_Pixel
 (
 PN$Coord1 In Number,
 PN$Coord2 In Number,
 PC$Separator In Varchar2 Default '|'
)
 Return Varchar2 ;

● Get the value of two current coordinate system values in a delimited
string

 Function To_Current_Coord
 (
 PN$Coord1 In Number,
 PN$Coord2 In Number,
 PC$Separator In Varchar2 Default '|'
)
 Return Varchar2 ;

● Init the blocks in order to use the Set_Custom_Property()

PROCEDURE init_laf_blocks
(
 PC$Blk1 in varchar2 default null
 ,PC$Blk2 in varchar2 default null
 ,PC$Blk3 in varchar2 default null
) ;

It is used to display the blocks located on non-visible canvas, in order to use
the Set_Custom_Property() on initialized elements. This procedure has to be
added to the When-New-Form-Instance trigger. You can pass one up to three
blocknames that you don't want to process, like the LAF or the Webutil blocks.

● Populate the clipboard from a table-block content.

PROCEDURE Copy_From_block
(
 PC$Block in varchar2
 ,PC$Bean in varchar2
 ,PB$Header in boolean default FALSE
 ,PN$From in pls_integer default 1
 ,PC$Items in varchar2 default null
 ,PC$FieldSep in varchar2 default CHR(9)
) ;

It is used to copy a table-block content to the clipboard. The data is exported
as ASCII delimited text. You can choose the column you want to export, and
also if you want to export the column header.
Only the first two parameters are mandatory: the block name and the Bean
Area name.
The PB$Header indicates if you want to export the column header.
The PN$From indicates from what column you want to export. For example, if
you don't want to export the first column, pass 2 as this parameter.
The PC$Items can be a comma delimited string that includes the list of
columns you want to export.
PC$FieldSep is the character used to separate the columns.

 e.g.
 -- export all columns plus header --
 Pkg_Tools.Copy_from_block('USR_TABLES','LAF_BLOCK.LAF_BEAN');
 –- export 3 columns without header –
 Pkg_Tools.Copy_from_block('USR_TABLES','LAF_BLOCK.LAF_BEAN',false,1,
 ,'EMPNO,SAL,COMM');

See the test_laf_copy_paste_block.fmb that is part of the LAF zip file.

● Populate the table-block from the clipboard.

PROCEDURE Paste_to_block
(
 PC$Block in varchar2
 ,PC$Bean in varchar2
 ,PB$Header in boolean default FALSE
 ,PN$From in pls_integer default 1
 ,PC$Items in varchar2 default null
 ,PC$FieldSep in varchar2 default CHR(9)
) ;

It is used to populate a table-block content from the clipboard content.
The records at created at current record position in the block.
Only the first two parameters are mandatory: the block name and the Bean
Area name.
The PB$Header indicates if you want to export the column header.
The PN$From indicates from what column you want to export. For example, if
you don't want to export the first column, pass 2 as this parameter.
The PC$Items can be a comma delimited string that includes the list of
columns you want to export.
PC$FieldSep is the character used to separate the columns.

You need to fetch the clipboard current content first.

 e.g.
 -- get the clipboard content --
 Set_Custom_Property('LAF_BLOCK.LAF_BEAN', 1, 'PASTE_FROM_CLIPBOARD', '');

 -- paste all columns --
 Pkg_Tools.Paste_to_block('USR_TABLES','LAF_BLOCK.LAF_BEAN');
 –- paste 3 columns without header –
 Pkg_Tools.Paste_to_block ('USR_TABLES','LAF_BLOCK.LAF_BEAN',false,1,
 ,'EMPNO,SAL,COMM');

See the test_laf_copy_paste_block.fmb that is part of the LAF zip file.

● Highlight a record with gradient background.

PROCEDURE highlight_record(PC$Block in varchar2) ;

It is used to highlight the current record when its Items Implementation class
is set to oracle.forms.fd.LAF_XP_TextField or oracle.forms.fd.LAF_XP_TextArea,
and a gradient background is given via the SET_GRADIENT method.
Call this procedure from the block's When-New-Record-Instance trigger:

 PKG_TOOLS.highlight_record(:system.current_block);

See the test_laf_gradient_fields.fmb that is part of the LAF zip file.

The table-block multi select record feature

It allows the end-user to select/unselect records in a table-block.

When a record is selected, its visual properties are updated to render the
selection to the screen.
It uses a Visual Attribute, and its properties can be read from the CSS file

 multi-select:VA_LAF_MTSELECT,Tahoma,I,10,r0g185b90,r255g255b150
 multi-select-modifier:Ctrl

Those properties must be defined in a section of GUI type.

multi-select tag defines the Visual Attribute and its properties used to
colourize the selected records.

 va_name[,font_name[,font_weight[,font_size[,foreground[,background]]]]

font_weight can be:

• P (plain)
• B (bold)
• I italic)
• PI (plain+italic)
• BI (bold+italic)

If you don't provide all element values, put a minus (-) instead.

 multi-select:VA_LAF_MTSELECT,Tahoma,-,10,-,r255g255b150

As this tag indicates the Visual Attribute used, it must exist at runtime in the
Forms module.
If all properties are already defined in this VA, you don't need to provide them
in the tag:

 multi-select:VA_LAF_MTSELECT

multi-select-modifier tag defines what keyboard modifier use to select the
record in conjunction with the mouse.

possible values are:

• - (none)
• Shift
• Ctrl
• Alt
• Shift+ctrl

If not provided, the tag default is nothing.

The Forms triggers

In order to use the multi-select feature in your table-block, you have to add
some code in the following triggers:

form-level:

POST-FORM

-- clear the collection before exiting --
pkg_multiselect.clear_all_blocks;

This clear the memory used by the module before exiting

block-level:

POST-QUERY

-- set initial value to unchecked --
pkg_multiselect.set_state(get_block_property(:system.trigger_block,
CURRENT_RECORD), 0);

It creates one in-memory collection element to handle the current record
status (selected/unselected). Initial value is 0 (zero) that means
unselected.

KEY-EXEQRY

-- clear the collection --
pkg_multiselect.clear;
-- execute the query --
execute_query;

It clears the in-memory collection before querying the data

KEY-DELREC

pkg_multiselect.delete_record(get_block_property(:system.trigger_block,
CURRENT_RECORD));
delete_record;

Used to synchronize the in-memory collection while deleting a record

WHEN-CREATE-RECORD

pkg_multiselect.create_record(get_block_property(:system.trigger_block,
CURRENT_RECORD));

Used to synchronize the in-memory collection while inserting a record

WHEN-MOUSE-[DOUBLE]CLICK

pkg_multiselect.change_state(:system.cursor_record);

That really do the select/unselect job

Those triggers are grouped in an Object Group in the laf.olb Object Library
The group name is : GRP_MULTISELECT

Drop this group name in your current module then drag the triggers in your
final block.

Get the selected record list

At the moment you want to get the selected record list, use the laf.pll
pkg_multiselect.get_checked_list() function:

Declare
t pkg_multiselect.TAB_SEL;

Begin
t := pkg_multiselect.get_checked_list('EMP');
if t.count > 0 then
 for i in 1 .. t.last loop
 message('selected record:' || t(i));
 end loop;
else
 message('no record selected') ;
end if ;

End;

pkg_multiselect.TAB_SEL is a PL/SQL table of PLS_INTEGERs.

At any time, within the current record, you can know its state
(selected/unselected) by using the pkg_multiselect.get_state() function

Begin
 first_record;
 loop
 message('rec:' || :SYSTEM.CURSOR_RECORD || ' ->'
 || pkg_multiselect.get_state(:SYSTEM.CURSOR_RECORD));
 exit when :system.last_record = 'TRUE';
 next_record;
 end loop;
End;

The function returns 1 for selected record and 0 for unselected record.

The Java Beans and the Pluggable Java Components

The DrawLaf Java Bean

All the graphic operations not in relation with a specific Forms item are done
through the methods included in the DrawLaf Java Bean.

It permits to manage the following aspects:

● Drawing shapes on the current canvas (images, lines, rectangles and
strings).

● Loading and playing sounds.
● Dynamically handling menus - add, remove, enable, disable, show and

hide menu options at runtime.
● Dynamically handling frames – add, remove, modify, move, show and

hide frames at runtime.
● Display single or multi-line input dialogue box.
● Transform the Forms into a Socket Server, able to receive external

asynchronous messages.
● Display texts anywhere on the canvas during a given time.
● Change fonts and colours for menu bar, window caption, status bar and

tabs.
● Pick a colour from a JColorChooser.
● Turn simple images into sensitive areas you can click on.
● Display an HTML Scrolling Panel to present large information in a small

room.
● Execute orders contained in an external file (Robot feature)
● Create dynamically items at runtime (buttons, textfields, checkboxes and

images)
● Handle dynamic table-blocks through Java Jtables.

All its methods are grouped in the oracle.form.fd.DrawLAF Java class.

In order to call these methods, you have to add a Bean Area on the canvas,
then set its Implementation Class property to:

oracle.forms.fd.DrawLAF

This class is stored in a JAR file, whose name depends on the version of Forms
you use:

● laf_902.jar if you use the 9.0.2 or 9.0.4 version
● laf_1012 if you use the 10.1.2 version
● laf_10123 if you use the 10.1.2.3 version
● laf_111112 if you use the 11.1.1.2 version

Note:
As you can only draw on the canvas that supports the Bean Area, you
need as many Bean Areas as you have different canvases in your Forms
application.

Doc: To see the complete list of available methods on this bean, read the
DrawLAF Java Bean documentation.

http://fdtool.free.fr/LAF/doc/pdf/DrawLAF_properties.pdf

The ImageViewer Java Bean

It is a useful tool to show image collections like photo albums or commercial
catalogues.

You can attach it to four different locations from the bean area:

● NORTH (current screen shot)

● SOUTH

● EST

● WEST

It offers more than 20 methods to set-up and display your images in a
scrolling bar. Each small icon can display an HTML tool tip, and the main
image will send a message back to Forms when you click it, allowing the
developer to attach any functions of his own to the image.

This feature needs its own screen area to display the image viewer, so
that you have to add another Bean Area to your canvas with the
following Implementation Class property:

oracle.forms.fd.ImageViewer

To test it, you would find the test_laf_image_viewer.fmb sample dialogue in
the /fmb folder.
It also uses the /fmb/icons folder that contains the images.
Without any modification, the sample dialogue expects to find this folder in the
c:/ root. If you want to copy the /icons folder anywhere else, indicate it in the
When-New-Form-Instance trigger:

 :GLOBAL.IMAGE_DIR := 'c:/other_place/icons/' ;

Doc: To see the complete list of available methods on this bean, read the
Carousel Java Bean properties.

http://fdtool.free.fr/LAF/doc/pdf/LAF_Image_Viewer_properties.pdf

The LAF_LOV Java Bean

It allows the developer to show a List of Values (LOV) in a Swing JTable object.
It is available since the 1.3.9 version.

It needs a database package to manage the data communication between the
database and the Java Bean.
The script of this package is located in the /script folder of the LAF zipped file.

The LOV is decorated in the same way as the table-blocks, and supports the
following features:

• Any column can be chosen by the end-user to filter the list.
• Any column can be sorted on.
• Any column can validate any item in the module.
• The end-user can move and resize any column.
• The column mapping permits to map the selected column to more than

one return item.
• You can define the LOV buttons' label and even put icons on them.

Doc: To see the complete list of available methods on this bean, read the LAF
LOV Bean documentation.

http://fdtool.free.fr/LAF/doc/pdf/LAF_LOV_properties.pdf
http://fdtool.free.fr/LAF/doc/pdf/LAF_LOV_properties.pdf

The LAF_Map Java Bean

It allows the developer to handle a HTML Map.
It is available since the 1.6.9 version.

As any HTML map, it needs an image and zone coordinates to describe the
different Map areas.

When a Map zone is clicked, a message is sent back to the forms module via
the Set_Custom_Item_Event trigger associated to the Bean Area.

The Implementation Class of the Bean Area must be : oracle.forms.fd.LAF_Map

Doc: To see the complete list of available methods on this bean, read the LAF
Map Bean documentation.

http://fdtool.free.fr/LAF/doc/pdf/LAF_Map_properties.pdf
http://fdtool.free.fr/LAF/doc/pdf/LAF_Map_properties.pdf

The Pluggable Java Components (PJCs)

Some of the Standard Forms Widgets can be overloaded to change their look
and extend their functionalities.

● Push Button

The Implementation Class property needed to overload a standard Push Button
is : oracle.forms.fd.LAF_XP_Button

Doc: To see the complete list of available methods on this PJC, read the
LAF_XP_Button properties documentation.

● Check-box

The Implementation Class property needed to overload a standard Check box
is : oracle.forms.fd.LAF_XP_CBox

Doc: To see the complete list of available methods on this PJC, read the
LAF_CheckBox properties documentation.

● Radio Button

The Implementation Class property needed to overload a standard Radio
Button is : oracle.forms.fd.LAF_XP_RadioButton

Doc: To see the complete list of available methods on this PJC, read the
LAF_XP_Button properties documentation.

http://fdtool.free.fr/LAF/doc/pdf/LAF_RadioButton_properties.pdf
http://fdtool.free.fr/LAF/doc/pdf/LAF_CheckBox_properties.pdf
http://fdtool.free.fr/LAF/doc/pdf/LAF_Button_properties.pdf

● Single-line Text Item

The Implementation Class property needed to overload a standard single-line
Text Item is : oracle.forms.fd.LAF_XP_TextField

Doc: To see the complete list of available methods on this PJC, read the
LAF_XP_TextField properties documentation.

● Multi-line Text Item

The Implementation Class property needed to overload a standard multi-line
Text Item is : oracle.forms.fd.LAF_XP_TextArea

Doc: To see the complete list of available methods on this PJC, read the
LAF_XP_TextArea properties documentation.

● Poplist item

The Implementation Class property needed to overload a Poplist Item is :
oracle.forms.fd.LAF_XP_PopList

Doc: To see the complete list of available methods on this PJC, read the
LAF_XP_PopList properties documentation.

http://fdtool.free.fr/LAF/doc/pdf/LAF_PopList_properties.pdf
http://fdtool.free.fr/LAF/doc/pdf/LAF_TextArea_properties.pdf
http://fdtool.free.fr/LAF/doc/pdf/LAF_TextField_properties.pdf

● Tlist item

The Implementation Class property needed to overload a Tlist Item is :
oracle.forms.fd.LAF_XP_TList

Doc: To see the complete list of available methods on this PJC, read the
LAF_XP_TList properties documentation.

http://fdtool.free.fr/LAF/doc/pdf/LAF_TList_properties.pdf

Implementation in the Forms modules

● Using the Template form

In the /fmb folder of the zip file, you would find a template named :
LAF_TEMPLATE.fmb.

While you are building a brand new module from scratch, it is best to
create the new module from this template, by using the File New → →
Forms using template... Forms Builder menu option.

Every component needed to use the LAF features will be incorporated.

● Using the Objects Library

You can also drag the GRP_LAF laf.olb Object Library's group to the
Objects Groups node of an empty Forms module.

● Update of existing modules

While you want to update existing modules, you have to use the
LAF_JDAPI tool.

It is made of a JAR file and a XML configuration file.
The XML file is used to indicate the list of the modules you want to
update, allowing you to update many modules in a one shot.

See the JDAPI_LAF tool

http://fdtool.free.fr/LAF/jdapi/jdapi_laf.htm

Download the LAF Project zip file

You can download the last version from the Look and Feel Project home page.

Here is a description of the content of the zip file:

● The /css sub-folder contains the current forms.css template CSS file.

Without any modification, this file is generally expected in the c:/ root
directory.

There are several places you can indicate the location of this file.

The PM$CSS_FILENAME Forms parameter is one of them.

If you create a new module from the LAF_TEMPLATE.fmb file or if you
use the GRP_LAF laf.olb Object Library group, it would be present in
your module.

You can also indicate the full path directly in the
PKG_Look_And_Feel.Open_Css() laf.pll's function.

If you are updating existing Forms module via the LAF_JDAPI tool, you
can also indicate the location of the CSS file in the XML configuration file.

http://fdtool.free.fr/LAF/jdapi/jdapi_laf.htm
http://fdtool.free.fr/LAF/doc/documentation.htm

● The /fmb sub-folder contains the Forms sample dialogues, the Object
Library, the demo icons and images, and two batch files to compile the
modules.

The laf_demo.fmb sample dialogue is a starting screen that groups
almost all the other demos.

Module compilation

Since, you have decompressed the zip file, and copy the Forms samples
and the PL/SQL library, you have to compile the modules.

Two batch files are provided to achieve that task:

compile_all_9i.bat and compile_all_10g.bat depending on the Forms
version you use. (Use compile_all_10g for Forms 11g)

The only argument to pass to these batch files is the Database
connection string.

Assume yours is : test/test@xe, and you are using Forms 10g, compile
the modules with the following:

mailto:test/test@xe

compile_all_10g.bat test/test@xe

Since the laf.pll has been compiled, move a copy of both laf.pll and
laf.plx files in one of the folders pointed by the FORMS_PATH environment
variable.

● The /Java folder contains two sub-folders:

/JARS that contains 4 JAR files:

● laf_902.jar

● laf_1012.jar

● laf_10123.jar

● laf_11112.jar

Only one of them is to copy to your /forms/java directory, depending
of the Forms version used.

/LAF_JDeveloper_Project that contains the whole Oracle Jdeveloper
project (Jdeveloper 10.1.3.1), for you, to adapt, enhance or simply
rebuild from Oracle Jdeveloper.

● The /pll folder that contains the laf.pll PL/SQL library.

It is required to attach this library to your Forms modules, if you want to
use the CSS feature like painting the canvas or the blocks.

It is not required to attach this library if you do not want to use the CSS
features, like decorating the blocks or tuning the general GUI settings.

Actually, almost every CSS tag feature has an equivalent
Set_Custom_Property() associated method, that you can call “manually”
from anywhere in the Forms code.

mailto:test/test@xe

● The /scripts folder contains some scripts to maintain the Database
objects.

PKG_LAF.sql

This PL/SQL package is needed to transfer LOB chunks between the
Database and the Java Bean.

It is particularly used by the Read_Image_Base() ImageViewer's Bean
and the Set_Sound_Base() DrawLAF's methods.

PKG_DB_LAF_LOV.sql

This PL/SQL package is needed to use the Swing JTable LOVs.

Examples

● A basic starting PL/SQL code

Here is a basic PL/SQL code you would use when the forms starts:

-- form main initializations --

If PKG_Look_And_Feel.Open_Css(:PARAMETER.PM$CSS_FILENAME) Then

 -- read the global GUI properties --
 PKG_LOOK_AND_FEEL.Set_GUI_Properties('.GUIProperties1',
 'LAF_BLOCK.LAF_BEAN') ;

 -- paint the canvases --
 PKG_LOOK_AND_FEEL.Paint_Canevas(:PARAMETER.PM$CANVAS,
 'LAF_BLOCK.LAF_BEAN') ;

 -- paint the blocks --
 PKG_LOOK_AND_FEEL.Paint_Block
 (
 PC$Block => 'EMP'
 ,PC$BeanName => 'LAF_BLOCK.LAF_BEAN'
 ,PC$VA_Name => :PARAMETER.PM$VA
 ,PC$HeadClass => :PARAMETER.PM$HEADER
 ,PC$BodyClass => :PARAMETER.PM$BODY
 ,PC$TitleClass => :PARAMETER.PM$TITLE
 ,PC$Title => 'Theme #1 for this table block'
 ,PB$ScrollBar => True
) ;

End if ;

The CSS file is loaded in memory, then the GUI properties are setted,
finally, the main canvas and the table-block(s) are painted.

Notice, that, if you have more that one block on the canvas that supports
the bean, you have to call the Paint_Block() procedure for each block.

Warning:

Because a Forms Bean Area supports a Java Bean, it has to be initialized
before you can use its methods. It is the reason why it is not
recommended to use the Set_Custom_Property() and
Get_Custom_Property() built-ins in the very starting phases of a Forms
module life, and those starting phases include the When-New-Form-
Instance and New-Block-Instance triggers.

The common tip, generally, is to introduce a short delay in the When-
New-Form-Instance trigger.

For this purpose, you can use, at least, two different methods:

● Use a timer

All you have to do is to create a non-repeating timer, then move
the specific LAF code to the When-Timer-Expired trigger:

When-New-Form-Instance trigger:
Declare
 timer_id Timer ;
Begin
 -- need a while before beans are initialized --
 timer_id := Create_Timer('laf_timer', 50, NO_REPEAT) ;
End ;

When-Timer-Expired trigger:
If lower(Get_Application_Property(TIMER_NAME)) = 'laf_timer' Then

 -- form main initializations --

 If PKG_Look_And_Feel.Open_Css(:PARAMETER.PM$CSS_FILENAME) Then
 ...
 End if ;

End if;

● Use the DBMS_LOCK.Sleep Database procedure

Another solution, when you are sure that the Forms module is connected
to the Database, is to introduce a short delay by using the
DBMS_LOCK.Sleep() procedure before setting the custom properties.

When-New-Form-Instance trigger:

 dbms_lock.sleep(2/10);
 If PKG_Look_And_Feel.Open_Css(:PARAMETER.PM$CSS_FILENAME) Then
 ...
 End if ;

This method is highly recommended as it avoids the “flashing
screen” disappointment.

● Special spread-table block setting.

While you have one block spread on two canvases, as it is the case when
you build a spread table, where some items are located on the main
canvas, and other items spread on a stacked canvas, you have to call the
Paint_Block() twice, once with the name of the Bean Area located on the
main canvas, and once with the name of the Bean Area located on the
stacked canvas.

● Multi-canvases module.

If the module contains more than one canvas, and you want to use the
LAF features on each of them, you need to put a Bean Area on, at least,
one block for each different canvas.

Warning:

You cannot use the methods of a Java Bean while it has not been
initialized, and a Java Bean is initialized only when it is on a visible
canvas, and this canvas is displayed.

In short, you cannot use the Set_Custom_Property() and
Get_Custom_Property() built-ins with a Java Bean located on a canvas
that has never been displayed.

To avoid a Java runtime error that will freeze the Java Bean, you have to
display every canvas that supports a Bean Area with the Show_View()
built-in while the Forms is started (When-New-Form-Instance or When-
Timer-Expired triggers).

Here is the PL/SQL code you would write for a module that contains two
canvases:
If PKG_Look_And_Feel.Open_Css(:PARAMETER.PM$CSS_FILENAME) Then

 -- paint the canvas --
 PKG_LOOK_AND_FEEL.Paint_Canevas(:PARAMETER.PM$CANVAS, 'CTRL.BEAN') ;
 -- set the GUI properties --
 PKG_LOOK_AND_FEEL.Set_GUI_Properties('.GUIProperties1', 'CTRL.BEAN') ;

 -- paint the blocks --
 PKG_LOOK_AND_FEEL.Paint_Block
 (
 PC$Block => 'EMP'
 ,PC$BeanName => 'CTRL.BEAN'
 ,PC$VA_Name => :PARAMETER.PM$VA
 ,PC$HeadClass => :PARAMETER.PM$HEADER
 ,PC$BodyClass => :PARAMETER.PM$BODY
 ,PC$TitleClass => :PARAMETER.PM$TITLE
 ,PC$Title => 'Theme #1 for this table block'
 ,PB$ScrollBar => true
) ;

 Go_Block('EMP');
 -- populate the block --
 Execute_Query ;

 --
 -- hidden canvases that supports PJCs must be displayed once
 -- to initialize the bean areas and PJCs implementation classes
 --
 Show_View('CV2');

 -- set some individual properties --
 PKG_LOOK_AND_FEEL.Paint_Canevas('.canvasBlue2', 'CTRL.LAF') ;

 ...

 -- come back to first canvas/block --
 Go_Block('EMP');

End if ;

Here is a procedure you can call from the When-Timer-Expired trigger, that
does the job:

PROCEDURE init_laf_blocks
(
 PC$Blk1 in varchar2 default null
 ,PC$Blk2 in varchar2 default null
 ,PC$Blk3 in varchar2 default null
)
IS

LC$blockDeb varchar2(60); -- start block
LC$block varchar2(60); -- current block name
LC$item varchar2(60); -- current item
LC$itemdeb varchar2(60); -- first item

BEGIN
LC$BlockDeb := get_form_property(NAME_IN('System.Current_Form')

 , FIRST_BLOCK) ;
LC$Block := LC$BlockDeb ;
Loop -- For each block of the form

If LC$Block != Upper(Nvl(PC$Blk1, ' '))
And LC$Block != Upper(Nvl(PC$Blk2, ' '))
And LC$Block != Upper(Nvl(PC$Blk3, ' ')) Then

LC$itemdeb := get_block_property(LC$BLOCK, FIRST_ITEM) ;
LC$item := LC$BLOCK || '.' || LC$itemdeb ;
While LC$itemdeb is not null loop -- For each item

-- navigable item ? –
IF GET_ITEM_PROPERTY(LC$Item , NAVIGABLE) = 'TRUE' Then

Go_Block(LC$Block);
Synchronize;
exit;

END IF;
LC$itemdeb := get_item_property(LC$item, NEXTITEM);
LC$item := LC$BLOCK || '.' || LC$itemdeb ;

End loop ;
End if ;
LC$Block := get_block_property(LC$Block, NEXTBLOCK) ;
exit when LC$Block is null ;

End loop ;
END init_laf_blocks;

This procedure is part of the laf.pll PL/SQL library in the PKG_TOOLS
package.
It accepts up to 3 arguments, that define block you don't want to proceed.

When-Timer-Expired trigger:

...

 PKG_TOOLS.init_laf_blocks('LAF_BLOCK', 'WEBUTIL');

 -– there, you can use the Set_Custom_Property() on every block/item.

...

Acknowledgements

This tool would probably not exist without the support of Grant Ronald, who,
first, gave me the idea, that introduced the need.

Create something is always great, but without the original idea, nothing can
exists ;o)

Many thanks to the people from the Oracle Forms Managers Grant Ronald,
Frank Nimphius and Duncan Mills for their support all along the past years.

Special thanks to the Oracle Forms Development Team in general who created
and maintained this fabulous product, allowing the developer to mix with as
many Java code as we want.

Special thanks for the people that tried, used, tested, raised bugs and also
provided code snippets and enhancements.

Developer list

This tool has been developed by the following people:

• Francois Degrelle (creator)

• John Vander Heyden (contributions in the laf.pll)

• Albert Ellen (contributions in the laf.pll)

• Tom Cleymans (for the use of his DispatchingBean solution)

• Anthony Hegarty (contribution in the DrawLAF.java)

• BUI Thanh Hoang (contribution in laf.pll and DrawLAF.java)

Oracle Forms Look & Feel project

Created and maintained by Francois Degrelle

Oracle Forms L&F Web site

http://fdtool.free.fr/LAF/doc/Oracle_Forms_Look_and_Feel_project.htm

	Introduction
	Warning
	LAF Project presentation
	System configuration
	Understanding the components
	The CSS file
	The laf.pll PL/SQL library
	The Java Beans and the Pluggable Java Components
	The DrawLaf Java Bean
	The ImageViewer Java Bean
	The LAF_LOV Java Bean
	The LAF_Map Java Bean
	The Pluggable Java Components (PJCs)

	Implementation in the Forms modules
	Download the LAF Project zip file
	Examples
	Acknowledgements
	Developer list

